Hydroxide Once or Twice? A Combined Neutron Crystallographic and Quantum Chemical Study of the Hydride Shift in D-Xylose Isomerase
نویسندگان
چکیده
The hydride shift mechanism of D-Xylose Isomerase converts D-glucose to D-fructose. In this work, we compute features of a “hydroxide once” mechanism for the hydride shift with quantum chemical calculations based on the 3KCO (linear) and 3KCL (cyclic) X-ray/neutron structures. The rigid boundary conditions of the active site “shoe-box”, together with ionization states and proton orientations, enables large scale electronic structure calculations of the entire active site with greatly reduced configuration sampling. In the reported hydroxide once mechanism, magnesium in the 2A ligation shifts to position 2B, ionizing the O2 proton of D-glucose, which is accepted by ASP-287. In this step a novel stabilization is discovered; the K183/D255 proton toggle, providing a ∼10 kcal/mol stabilization through inductive polarization over 5Å. Then, hydride shifts from glucose-O2 to glucose-O1 (the interconversion) generating hydroxide (once) from the catalytic water. This step is consistent with the observation of hyroxide in structure 3CWH, which we identify as a branch point. From this branch point, we find several routes to the solvent-free regeneration of catalytic water that is strongly exothermic (by ∼20 kcal/mol), yielding one additional hydrogen bond more than the starting structure. This non-Michaelis behavior, strongly below the starting cyclic and linear total energy, explains the observed accumulation of hydroxide intermediate – we postulate that forming permissive ionization states, required for cyclization, may be the rate limiting step. In all, we find eight items of experimental correspondence supporting features of the putative hydroxide once mechanism. . CC-BY 4.0 International license not peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/030601 doi: bioRxiv preprint first posted online Nov. 4, 2015;
منابع مشابه
Observations of reaction intermediates and the mechanism of aldose-ketose interconversion by D-xylose isomerase.
Crystallographic studies of D-xylose isomerase (D-xylose ketol-isomerase, EC 5.3.1.5) incubated to equilibrium with substrate/product mixtures of xylose and xylulose show electron density for a bound intermediate. The accumulation of this bound intermediate shows that the mechanism is a non-Michaelis type. Carrell et al. [Carrell, H. L., Glusker, J. P., Burger, V., Manfre, F., Tritsch, D. & Bie...
متن کاملThe structure of rhamnose isomerase from Escherichia coli and its relation with xylose isomerase illustrates a change between inter and intra-subunit complementation during evolution.
Using a new expression construct, rhamnose isomerase from Escherichia coli was purified and crystallized. The crystal structure was solved by multiple isomorphous replacement and refined to a crystallographic residual of 17.4 % at 1.6 A resolution. Rhamnose isomerase is a tight tetramer of four (beta/alpha)(8)-barrels. A comparison with other known structures reveals that rhamnose isomerase is ...
متن کاملInvestigation of metal hydrides applicability as neutron moderator and shielding by MCNPX
In this research, the applicability of several metal hydrides as neutron moderator and shielding for D-D fusion sources has been investigated by MCNPX code. The results have been investigated in three steps to find the materials with lower thermal, fast and total neutron fluxes than conventional shielding materials. The results show relative advantages of LaNi5H6, VH, TiH2, TaH, Mg (BH4)2, YH2,...
متن کاملThe role of active-site aromatic and polar residues in catalysis and substrate discrimination by xylose isomerase.
The functions of individual amino acid residues in the active site of Thermoanaerobacterium thermosulfurigenes D-xylose ketol-isomerase (EC 5.3.1.5) were studied by site-directed substitution. The role of aromatic residues in the active-site pocket was not limited to the creation of a hydrophobic environment. For example, Trp-188 provided for substrate binding and Trp-139 allowed for the discri...
متن کاملHydrogen location in stages of an enzyme-catalyzed reaction: time-of-flight neutron structure of D-xylose isomerase with bound D-xylulose.
The time-of-flight neutron Laue technique has been used to determine the location of hydrogen atoms in the enzyme d-xylose isomerase (XI). The neutron structure of crystalline XI with bound product, d-xylulose, shows, unexpectedly, that O5 of d-xylulose is not protonated but is hydrogen-bonded to doubly protonated His54. Also, Lys289, which is neutral in native XI, is protonated (positively cha...
متن کامل